Send to

Choose Destination
See comment in PubMed Commons below
Environ Pollut. 2005 Jan;133(1):43-51.

Influence of ageing of residues on the availability of herbicides for leaching.

Author information

Nutrient and Pesticide Dynamics, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK.


Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron >> isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center