Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods Enzymol. 2004;389:131-54.

Measuring the modulatory effects of RGS proteins on GIRK channels.

Author information

1
Department of Physiology and Biophysics, University of South Florida College of Medicine, Tampa 33612, USA.

Abstract

Discovery of "regulators of G-protein signaling" (RGS) as GTPase-activating proteins for heterotrimeric G proteins has provided a highly sought "missing link," reconciling past discrepancies between the in vitro GTPase activity of purified G proteins and the kinetics of physiological responses mediated by G-protein signaling in vivo. With the number of RGS genes in the mammalian genome at more than 30, associating specific RGS proteins to specific G-protein-coupled receptor (GPCR) signaling events has become a focus of RGS investigators. The ubiquitous expression of multiple RGS proteins has complicated this effort, yet the outlook has been encouraged with the identification of RGS9 as the determinant mediating rapid recovery of the transducin-dependent photoresponse. G-protein-gated inwardly rectifying potassium (GIRK) channels that mediate inhibitory synaptic transmission via GPCR activation of pertussis toxin-sensitive G proteins are similarly accelerated by RGS proteins when reconstituted in heterologous cell expression systems and fully reproduce the gating properties of native GIRK channels in neurons and cardiomyocytes. The endogenous neuronal and cardiac RGS protein(s) that accelerate GPCR-->GIRK channel-gating kinetics are currently not known. This article describes methods used to measure the receptor-dependent GIRK channel-gating parameters reconstituted in Chinese hamster ovary (CHO-K1) cells and Xenopus oocytes, as well as rat atrial myocytes and rat cerebellar granule neurons as model cells with native GPCR-->GIRK channel signaling. Applications of these methods for structure-function-based studies of RGS proteins, G proteins, and GPCRs are discussed. We also describe single cell reverse transcriptase polymerase chain reaction methods developed to profile atrial myocyte and neuronal RGS expression to identify specific RGS proteins for targeted knockdown or knockout.

PMID:
15313564
DOI:
10.1016/S0076-6879(04)89009-8
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center