Send to

Choose Destination
See comment in PubMed Commons below
J Control Release. 2004 Aug 27;98(3):395-405.

Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties.

Author information

  • 1Laboratoire de Chimie Physique MacromolĂ©culaire, Groupe ENSIC, BP 451, UMR CNRS-INPL 7568, 54001 Nancy Cedex, France.


Amphiphilic derivatives of sodium alginate, prepared by chemical covalent binding of long alkyl chains onto the polysaccharide backbone via ester functions, form strong hydrogels in aqueous solutions. The shear-thinning and thixotropic behaviors of these hydrogels have been exploited to prepare particles (millimetric beads or microparticles) by dispersion in sodium chloride solutions. This all-aqueous procedure was used for the encapsulation of model proteins, such as bovine serum albumin (BSA) and human hemoglobin (Hb), or of a vaccine protein (Helicobacter pylori (H. pylori) urease). In all cases, the encapsulation yields were very high (70-100%). No release of model proteins was observed in water within several days, in contrast with protein-loaded calcium alginate particles, which exhibit an important release within only a few hours. The controlled release of proteins can, however, be achieved by inducing the dissociation of the physical hydrophobic network. This dissociation has been obtained either by addition of surfactants, acting as disrupting agents of intermolecular hydrophobic junctions, or of esterases such as lipases, which hydrolyze the ester bond between alkyl chains and the polysaccharide backbone. The level of immunization against H. pylori infection in mice, induced by encapsulated urease administrated by either systemic or mucosal routes, was also assessed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center