Format

Send to

Choose Destination
Biol Reprod. 2004 Dec;71(6):1898-906. Epub 2004 Aug 11.

Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation.

Author information

1
Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA.

Abstract

Various pathological stimuli such as radiation, environmental toxicants, oxidative stress, and heat shock can initiate apoptosis in mammalian oocytes. Experiments were performed to examine whether apoptosis mediated by group II caspases is the cause for disruption of oocyte function by heat shock applied during maturation in cattle. Bovine cumulus-oocyte complexes (COCs) were cultured at 38.5, 40, or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were at 38.5 degrees C and 5% (v/v) CO2 for all treatments. In the first experiment, exposure of COCs to thermal stress during the first 12 h of maturation reduced cleavage rate and the number of oocytes developing to the blastocyst stage. In the second experiment, a higher percentage of TUNEL-positive oocytes was noted at the end of maturation for oocytes matured at 40 and 41 degrees C than for those at 38.5 degrees C. In addition, the distribution of oocytes classified as having high (>25 intensity units), medium (15-25 intensity units), and low (<15 intensity units) caspase activity was affected by treatment, with a greater proportion of heat-shocked oocytes having medium or high activity. In the third experiment, COCs were placed in maturation medium with vehicle (0.5% [v/v] DMSO) or 200 nM z-DEVD-fmk, an inhibitor of group II caspases. The COCs were matured at 38.5 or 41 degrees C, fertilized and cultured for 8 days. The inhibitor blocked the effect of heat shock on cleavage rate and the percentage of oocytes and cleaved embryos developing to the blastocyst stage. In conclusion, heat shock during oocyte maturation can promote an apoptotic response mediated by group II caspases, which, in turn, leads to disruption of the oocyte's capacity to support early embryonic development following fertilization.

PMID:
15306551
DOI:
10.1095/biolreprod.104.031690
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center