Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Oct 8;279(41):42774-86. Epub 2004 Aug 9.

Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells.

Author information

Pharmaceutical Research Center, Meiji Seika Kaisha Limited, 760 Moro-oka-cho, Kohoku-ku, Yokohama 222-8567, Japan.


Synthesis of ADP-ribose polymers catalyzed by poly-(ADP-ribose) polymerase-1 (PARP-1) has been implicated in transcriptional regulation. Recent studies with PARP-1 null mice and PARP-1 inhibitors have also demonstrated that PARP-1 has an essential role in nuclear factor-kappaB (NF-kappaB)-dependent gene expression induced by various inflammatory stimuli. In this study, we used primary cultured mouse glial cells to investigate the role of poly(ADP-ribosyl)ation by PARP-1 in NF-kappaB-dependent gene expression. PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA suppressed lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-alpha and inducible nitric-oxide synthase, suggesting that PARP-1 activity has a critical role in synthesis. Western blotting with anti-poly(ADP-ribose) antibody revealed that PARP-1 itself was mainly poly(ADP-ribosyl)ated in glial cells, i.e. automodified PARP-1 (AM-PARP). The amounts of AM-PARP were not affected by LPS treatment, but were decreased by PARP-1 inhibitors. Electrophoretic mobility shift assay revealed that PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA reduced the LPS-induced DNA binding of NF-kappaB. Non-modified PARP-1 also reduced the DNA binding of NF-kappaB via its physical association with NF-kappaB, whereas AM-PARP had no effect. On the other hand, enhancement of the automodification of PARP-1 by the addition of NAD+, its substrate, promoted the DNA binding of NF-kappaB. Furthermore, in in vitro transcription assay, the addition of AM-PARP or NAD+ to nuclear extracts promoted NF-kappaB p50-dependent transcription. These results indicate that automodification of PARP-1 positively up-regulates formation of the NF-kappaB.DNA complex and enhances transcriptional activation. Therefore, AM-PARP may be critical for the NF-kappaB-dependent gene expression of some inflammatory mediators in glial cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center