Send to

Choose Destination
Exp Brain Res. 2005 Jan;160(3):302-11. Epub 2004 Aug 6.

Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques.

Author information

Department of Medical Psychology, University of Munich Medical School, Goethestr. 31, 80336 Munich, Germany.


Using a conditioning paradigm, the olfactory sensitivity of three squirrel monkeys and three pigtail macaques for homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone), symmetrical ketones (3-pentanone to 6-undecanone), and C7-ketones (2-heptanone to 4-heptanone) was assessed. In the majority of cases, the animals of both species significantly discriminated concentrations below 1 ppm from the odorless solvent, and with 2-nonanone and 5-nonanone the monkeys even demonstrated thresholds below 1 ppb. The results showed both primate species have a well-developed olfactory sensitivity for aliphatic ketones, and pigtail macaques generally perform better than squirrel monkeys in detecting members of this class of odorants. Further, in both species tested, we found a significant negative correlation between perceptibility in terms of olfactory detection thresholds and carbon-chain length of both the 2-ketones and the symmetrical ketones, but not between detection thresholds and position of the functional group with the C7-ketones. These findings lend further support to the growing body of evidence suggesting that between-species comparisons of the number of functional olfactory receptor genes or of neuroanatomical features are poor predictors of olfactory performance.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center