Format

Send to

Choose Destination
J Physiol. 2004 Oct 1;560(Pt 1):137-55. Epub 2004 Aug 5.

External Ca(2+)-dependent excitation--contraction coupling in a population of ageing mouse skeletal muscle fibres.

Author information

1
Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA. odelbono@wfubmc.edu.

Abstract

In the present work, we investigate whether changes in excitation-contraction (EC) coupling mode occur in skeletal muscles from ageing mammals by examining the dependence of EC coupling on extracellular Ca(2+). Single intact muscle fibres from flexor digitorum brevis muscles from young (2-6 months) and old (23-30 months) mice were subjected to tetanic contractile protocols in the presence and absence of external Ca(2+). Contractile experiments in the absence of external Ca(2+) show that about half of muscle fibres from old mice are dependent upon external Ca(2+) for maintaining maximal tetanic force output, while young fibres are not. Decreased force in the absence of external Ca(2+) was not due to changes in charge movement as revealed by whole-cell patch-clamp experiments. Ca(2+) transients, measured by fluo-4 fluorescence, declined in voltage-clamped fibres from old mice in the absence of external Ca(2+). Similarly, Ca(2+) transients declined in parallel with tetanic contractile force in single intact fibres. Examination of inward Ca(2+) current and of mRNA and protein assays suggest that these changes in EC coupling mode are not due to shifts in dihydropyridine receptor (DHPR) and/or ryanodine receptor (RyR) isoforms. These results indicate that a change in EC coupling mode occurs in a population of fibres in ageing skeletal muscle, and is responsible for the age-related dependence on extracellular Ca(2+).

PMID:
15297570
PMCID:
PMC1665204
DOI:
10.1113/jphysiol.2004.067322
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center