Format

Send to

Choose Destination
Virus Res. 1992 Jul;24(2):211-22.

Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins.

Author information

1
National Animal Disease Center, U.S. Department of Agriculture, Ames, IA 50010.

Abstract

The San Miguel sea lion viruses, members of the calicivirus family, are closely related to the vesicular disease of swine viruses which can cause severe disease in swine. In order to begin the molecular characterization of these viruses, the nucleotide sequence of the capsid protein gene of two San Miguel sea lion viruses (SMSV), serotypes 1 and 4, was determined. The coding sequences for the capsid precursor protein were located within the 3' terminal 2620 bases of the genomic RNAs of both viruses. The encoded capsid precursor proteins were 79,500 and 77,634 Da for SMSV 1 and SMSV 4, respectively. The SMSV 1 protein was 47.7% and SMSV 4 was 48.6% homologous to the feline calicivirus (FCV) capsid precursor protein while the two SMSV capsid precursors were 73% homologous to each other. Six distinct regions within the capsid precursors (denoted as regions A-F) were identified based on amino acid sequence alignment analysis of the two SMSV serotypes with FCV and the rabbit hemorrhagic disease virus (RHDV) capsid protein. Three regions showed similarity among all four viruses (regions B, D and F) and one region showed a very high degree of homology between the SMSV serotypes but only limited similarity with FCV (region A). RHDV contained only a truncated region A. A fifth region, consisting of approximately 100 residues, was not conserved among any of the viruses (region E) and, in SMSV, may contain the serotype-specific determinants. Another small region (region C) contained between 15 and 27 amino acids and showed little sequence conservation. Region B showed the highest degree of conservation among the four viruses and contained the residues which had homology to the picornavirus VP3 structural protein. An open reading frame, found in the 3' terminal 514 bases of the SMSV genomes, encoded small proteins (12,575 and 12,522 Da, respectively for SMSV 1 and SMSV 4) of which 32% of the conserved amino acids were basic residues, implying a possible nucleic acid-binding function.

PMID:
1529644
DOI:
10.1016/0168-1702(92)90008-w
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center