Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2004 Aug 4;24(31):6880-8.

Protein kinase C delta mediates cerebral reperfusion injury in vivo.

Author information

  • 1Department of Molecular Pharmacology, Stanford Stroke Center, Stanford University School of Medicine, Stanford, California 94305-5174, USA.

Abstract

Protein kinase C (PKC) has been implicated in mediating ischemic and reperfusion damage in multiple organs. However, conflicting reports exist on the role of individual PKC isozymes in cerebral ischemic injury. Using a peptide inhibitor selective for deltaPKC, deltaV1-1, we found that deltaPKC inhibition reduced cellular injury in a rat hippocampal slice model of cerebral ischemia [oxygen-glucose deprivation (OGD)] when present both during OGD and for the first 3 hr of reperfusion. We next demonstrated peptide delivery to the brain parenchyma after in vivo delivery by detecting biotin-conjugateddeltaV1-1 and by measuring inhibition of intracellular deltaPKC translocation, an indicator of deltaPKC activity. Delivery of deltaV1-1 decreased infarct size in an in vivo rat stroke model of transient middle cerebral artery occlusion. Importantly, deltaV1-1 had no effect when delivered immediately before ischemia. However, delivery at the onset, at 1 hr, or at 6 hr of reperfusion reduced injury by 68, 47, and 58%, respectively. Previous work has implicated deltaPKC in mediating apoptotic processes. We therefore determined whether deltaPKC inhibition altered apoptotic cell death or cell survival pathways in our models. We found that deltaV1-1 reduced numbers of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells, indicating decreased apoptosis, increased levels of phospho-Akt, a kinase involved in cell survival pathways, and inhibited BAD (Bcl-2-associated death protein) protein translocation from the cell cytosol to the membrane, indicating inhibition of proapoptotic signaling. These data support a deleterious role for deltaPKC during reperfusion and suggest that deltaV1-1 delivery, even hours after commencement of reperfusion, may provide a therapeutic advantage after cerebral ischemia.

PMID:
15295022
DOI:
10.1523/JNEUROSCI.4474-03.2004
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center