Format

Send to

Choose Destination
J Adhes Dent. 2004 Summer;6(2):141-50.

Depth of cure of LED vs QTH light-curing devices at a distance of 7 mm.

Author information

1
Department of Operative Dentistry, Johannes Gutenberg University, Mainz, Germany. Ernst@mail.uni-mainz.de

Abstract

PURPOSE:

To determine the depth of cure of 5 blue LED curing devices compared to that obtained with 3 QTH curing devices.

MATERIALS AND METHODS:

The LED curing devices tested were 1) e-Light: 40 s; 2) Elipar FreeLight: 40 s; 3) Elipar FreeLight 2: 20 s and 40 s; 4) Ultra-Lume LED 2: 20 s and 40 s; 5) LEDemetron 1: 20 s and 40 s. The QTH curing devices tested were 1) Optilux 501: standard light guide 20 s and 40 s, turbo light guide 20 s; 2) Elipar TriLight: 40 s; 3) Astralis 10: 20 s. Surface hardness was measured (Zwick Z2.5/TS1S) 10 min after exposure on the top and bottom surface of resin samples (Tetric Ceram A3, 1 to 5 mm; 0.5 mm increment, diameter 5 mm, n = 9) which were cured at a distance of 7 mm from the bottom of the sample to the light-guide tip to simulate a Class II curing situation. A reference sample was cured under direct contact with the light guide. The reference sample with the greatest top surface hardness of all devices measured served as the overall control. A bottom/top surface hardness ratio of > or = 80% of the reference sample cured at zero distance was defined as clinically acceptable for safe curing. A descriptive statistical analysis was carried out.

RESULTS:

With QTH lamps, the mean maximum resin composite sample thickness which cured sufficiently (relative surface ratio > or = 80%) was: 3 mm for Optilux 501, standard light guide, 40 s; 2.5 mm for Trilight, 40 s; and 1.5 mm for Astralis 10, 20 s. The first-generation LED curing devices FreeLight and GC e-Light, both applied for 40 s, and the Optilux 501 operated for 20 s with the standard and the turbo light guide could not sufficiently cure a 1-mm-thick sample at a distance of 7 mm. The new FreeLight 2 and the Ultra-Lume LED 2 cured resin samples up to 2.5 mm thick in 40 s with a relative surface ratio > or = 80%, while no sufficient depth of cure was found after 20 s exposure time for the FreeLight 2. However, a 1.5-mm depth of cure with the Ultra-Lume LED 2 and the LEDemetron 1 with the 13/11 mm light guide was obtained after 20 s. The LEDemetron 1 equipped with a 13/8 mm light guide reached a depth of cure of 2.0 mm. No significant difference was found between the Elipar FreeLight 2, Ultra-Lume LED 2, and LEDemetron 1 in their overall curing potential (linear statistical model, 5% level, Bonferroni-correction) given 40 s or 20 s of exposure time.

CONCLUSION:

Application of the first-generation LED curing devices FreeLight and e-Light did not ensure clinically sufficient depths of cure, while the new high-power LED curing devices FreeLight 2, Ultra-Lume LED 2, and LEDemetron 1 showed a curing potential equal to the Optilux 501, given 40 s of exposure time.

PMID:
15293424
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center