Send to

Choose Destination
See comment in PubMed Commons below
Med Sci Sports Exerc. 2004 Aug;36(8):1269-74.

Heart rate variability of recently concussed athletes at rest and exercise.

Author information

School of Kinesiology, Simon Fraser University Burnaby, British Columbia, Canada.



The objective of this study was to assess the neuroautonomic cardiovascular regulation in recently concussed athletes at rest and in response to low-moderate steady-state exercise, using heart rate variability (HRV).


A 5-min ECG sample was taken at rest from the 14 concussed athletes at 1.8 (+/- 0.2) days postinjury and again at 5 d later. Once asymptomatic at rest, the concussed athletes and their matched controls (N = 14) participated in an exercise protocol. The protocol consisted of a 2-min warm-up with a pedaling frequency between 50 and 60 rpm against a load of 40 W. After the warm-up, the athletes engaged in a low-moderate intensity steady state 10-min exercise bout where the pedaling frequency and load increased to 80-90 rpm and 1.5 W x kg(-1) body weight, respectively. The protocol was repeated 5 d later. A 5-min ECG sample from minutes 4 to 9 of the low-moderate intensity steady state exercise bout was used to assess HRV during exercise. Mixed model ANOVA were used to analyze the data.


No difference at rest was detected between the concussed athletes and their matched controls in any of the HRV variables measured. However, across both exercise tests, the concussed group demonstrated a significant decrease in the mean RR interval, and low- and high-frequency power (P < 0.05) in relation to their matched controls.


Low-moderate steady-state exercise elicits a neuroautonomic cardiovascular dysfunction in concussed athletes that is not present in a rested state. This dysfunction alludes to an exercise induced uncoupling between the autonomic and cardiovascular systems.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center