Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11868-73. Epub 2004 Aug 3.

Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors.

Author information

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.


To elucidate the functional link between Ca(2+)/calmodulin protein kinase II (CaMKII) and P2X receptor activation, we studied the effects of electrical stimulation, such as occurs in injurious conditions, on P2X receptor-mediated ATP responses in primary sensory dorsal root ganglion neurons. We found that endogenously active CaMKII up-regulates basal P2X3 receptor activity in dorsal root ganglion neurons. Electrical stimulation causes prolonged increases in ATP currents that lasts up to approximately 45 min. In addition, the total and phosphorylated CaMKII are also up-regulated. The enhancement of ATP currents depends on Ca(2+) and calmodulin and is completely blocked by the CaMKII inhibitor, 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine). Western analyses indicate that electrical stimulation enhances the expression of P2X3 receptors in the membrane and that the enhancement is blocked by the inhibitor. These results suggest that CaMKII up-regulated by electrical stimulation enhances ATP responses by promoting trafficking of P2X receptors to the membrane and may play a key role in the sensitization of P2X receptors under injurious conditions.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center