Format

Send to

Choose Destination
See comment in PubMed Commons below
Prog Neurobiol. 1992 Nov;39(5):547-61.

The purine nucleotide cycle and its molecular defects.

Author information

1
Laboratory of Physiological Chemistry, International Institute of Cellular and Molecular Pathology, Brussels, Belgium.

Abstract

Three enzymes of purine metabolism, adenylosuccinate synthetase, adenylosuccinate lyase and AMP deaminase, have been proposed to form a functional unit, termed the purine nucleotide cycle. This cycle converts AMP into IMP and reconverts IMP into AMP via adenylosuccinate, thereby producing NH3 and forming fumarate from aspartate. In muscle, the purine nucleotide cycle has been shown to function during intense exercise; the metabolic flux through the cycle has been proposed to play a role in the regeneration of ATP by pulling the adenylate kinase reaction in the direction of formation of ATP, and by providing Krebs cycle intermediates. In kidney, the purine nucleotide cycle was shown to account for the release of NH3 under the normal acid-base status, but not under acidotic conditions. In brain, the purine nucleotide cycle might function under conditions that induce a loss of ATP, and thereby contribute to its recovery. There is no evidence that the purine nucleotide cycle operates in liver. Deficiency of muscle AMP deaminase is an apparently frequent disorder, which might affect approximately 2% of the general population. The observation that it can be found in clinically asymptomatic individuals suggests, paradoxically, that the ATP-regenerating function which has been attributed to the purine nucleotide cycle is not essential for muscle function. Further work should be aimed at identifying the conditions under which AMP deaminase deficiency becomes symptomatic. Adenylosuccinate lyase deficiency provokes psychomotor retardation, often accompanied by autistic features. Its clinical heterogeneity justifies systematic screening in patients with unexplained mental deficiency. Additional studies are required to determine the mechanisms whereby this enzyme defect results in psychomotor retardation.

PMID:
1529104
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center