Send to

Choose Destination
Pharm Res. 2004 Jul;21(7):1119-26.

Pulmonary delivery of deslorelin: large-porous PLGA particles and HPbetaCD complexes.

Author information

Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.



To compare the systemic delivery of deslorelin following intratracheal administration of different deslorelin formulations. The formulations included dry powders of deslorelin, large-porous deslorelin-poly(lactide-co-glycolide) (PLGA) particles, and small conventional deslorelin-PLGA particles. Also, solution formulations of deslorelin and deslorelin-hydroxy-propyl-beta-cyclodextrin (HPbetaCD) complexes were tested.


Dry powders of deslorelin, large-porous (mean diameter, 13.8 microm; density, 0.082 g/cc), and small conventional (mean diameter, 2.2 microm; density, 0.7 g/cc) deslorelin-PLGA particles and solutions of deslorelin with or without HPbetaCD were administered intratracheally to Sprague-Dawley rats. Blood samples were collected at 3 h, 1, 3, and 7 days postdosing, and plasma deslorelin concentrations were determined using enzyme immunoassay. At the end of 7 days, lungs were isolated, and bronchoalveolar lavage fluid was collected and analyzed for deslorelin.


At the end of 7 days, deslorelin plasma concentrations in the large-porous deslorelin-PLGA particle group were 120-fold and 2.5-fold higher compared to deslorelin powder and small conventional deslorelin-PLGA particles, respectively. Co-administration of HPbetaCD resulted in 2-, 3-, and 3-fold higher plasma deslorelin concentrations at 3 h, 1 and 3 days, respectively, compared to deslorelin solution. On day 7, deslorelin concentrations in bronchoalveolar lavage fluid as well as plasma were in the order: large porous particles > small conventional particles > deslorelin-HPbetaCD solution > deslorelin powder > deslorelin solution.


Large-porous deslorelin PLGA particles can sustain deslorelin delivery via the deep lungs. Co-administration of HPbetaCD enhances the systemic delivery of deslorelin. The pulmonary route is useful as a noninvasive alternative for the systemic delivery of deslorelin.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center