Format

Send to

Choose Destination
Mutat Res. 2004 Aug 18;552(1-2):101-17.

Emerging contaminants--pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms.

Author information

1
Department for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia. smital@rudjer.irb.hr

Abstract

The environmental presence of chemosensitizers or inhibitors of the multixenobiotic resistance (MXR) defense system in aquatic organisms could cause increase in intracellular accumulation and toxic effects of other xenobiotics normally effluxed by MXR transport proteins (P-glycoprotein (P-gps), MRPs). MXR inhibition with concomitant detrimental effects has been shown in several studies with aquatic organisms exposed to both model MXR inhibitors and environmental pollutants. The presence of MXR inhibitors has been demonstrated in environmental samples from polluted locations at concentrations that could abolish P-gp transport activity. However, it is not clear whether the inhibition observed after exposure to environmental samples is a result of saturation of MXR transport proteins by numerous substrates present in polluted waters or results from the presence of powerful MXR inhibitors. And are potent environmental MXR inhibitors natural or man-made chemicals? As a consequence of these uncertainties, no official action has been taken to monitor and control the release and presence of MXR inhibitors into aquatic environments. In this paper we present our new results addressing these critical questions. Ecotoxicological significance of MXR inhibition was supported in in vivo studies that demonstrated an increase in the production of mutagenic metabolites by mussels and an increase in the number of sea urchin embryos with apoptotic cells after exposure to model MXR inhibitors. We also demonstrated that MXR inhibitors are present among both conventional and emerging man-made pollutants: some pesticides and synthetic musk fragrances show extremely high MXR inhibitory potential at environmentally relevant concentrations. In addition, we emphasized the biological transformation of crude oil hydrocarbons into MXR inhibitors by oil-degrading bacteria, and the risk potentially caused by powerful natural MXR inhibitors produced by invasive species.

PMID:
15288544
DOI:
10.1016/j.mrfmmm.2004.06.006
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center