Send to

Choose Destination
J Pharm Pharmacol. 2004 Aug;56(8):1061-6.

Reversal of P-gp mediated multidrug resistance in-vitro and in-vivo by FG020318.

Author information

Cancer Center, Sun Yat-Sen University, Guangzhou 510060, PR China.


Overexpression of P-glycoprotein (P-gp) by tumours results in multidrug resistance (MDR) to structurally and functionally unrelated chemotherapeutic drugs. Combined therapy with MDR-related cytotoxins and MDR modulators is a promising strategy to overcome clinical MDR. This study was performed to explore the MDR reversal activity of a novel compound 2-[4-(2-pyridin-2-yl-vinyl) phenyl]-4,5-bis-(4-N,N-diethylaminophenyl)-1(H)-imidazole (FG020318) in-vitro and in-vivo. Tetrazolium (MTT) assay was used to evaluate the ability of FG020318 to reverse drug resistance in two P-gp-expressing tumour cell lines, KBv200 and MCF-7/adr. Intracellular doxorubicin accumulation was determined by fluorescence spectrophotometry in MCF-7/adr cell line. The effect of FG020318 on P-gp function was demonstrated by rhodamine 123 (Rh123) accumulation in KBv200 cells. KBv200 cell xenograft models were established to study the in-vivo effect of FG020318 on reversing MDR. FG020318 was not cytotoxic by itself against P-gp expressing KBv200 cells and MCF-7/adr cells and their parental drug-sensitive KB cells and MCF-7 cells. FG020318 could significantly increase the sensitivity of MDR cells to antitumour drugs including doxorubicin and vincristine in MCF-7/adr cells and KBv200 cells, respectively. It was much stronger than the positive control verapamil in reversal of MDR. FG020318 also increased the intracellular accumulation of doxorubicin in a concentration-dependent manner in MCF-7/adr cells, but did not affect the accumulation of doxorubicin in drug-sensitive MCF-7 cells. The Rh123 accumulation in resistant KBv200 cells was also increased by the addition of FG020318, but Rh123 accumulation was not affected by FG020318 in drug-sensitive KB cells. FG020318 potentiated the antitumour activity of vincristine to KBv200 xenografts and was an efficacious modulator in-vivo. Our results suggested that FG020318 was a highly potent, efficacious MDR modulator not only in-vitro but also in-vivo. The reversal of drug resistance by FG020318 was probably related to the increased anticancer drug accumulation and its inhibition of P-gp function of MDR tumour cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center