Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2004 Jul;167(3):1213-23.

The direct interaction between ASH2, a Drosophila trithorax group protein, and SKTL, a nuclear phosphatidylinositol 4-phosphate 5-kinase, implies a role for phosphatidylinositol 4,5-bisphosphate in maintaining transcriptionally active chromatin.

Author information

  • 1Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.


The products of trithorax group (trxG) genes maintain active transcription of many important developmental regulatory genes, including homeotic genes. Several trxG proteins have been shown to act in multimeric protein complexes that modify chromatin structure. ASH2, the product of the Drosophila trxG gene absent, small, or homeotic discs 2 (ash2) is a component of a 500-kD complex. In this article, we provide biochemical evidence that ASH2 binds directly to Skittles (SKTL), a predicted phosphatidylinositol 4-phosphate 5-kinase, and genetic evidence that the association of these proteins is functionally significant. We also show that histone H1 hyperphosphorylation is dramatically increased in both ash2 and sktl mutant polytene chromosomes. These results suggest that ASH2 maintains active transcription by binding a producer of nuclear phosphoinositides and downregulating histone H1 hyperphosphorylation.

[PubMed - indexed for MEDLINE]
Free PMC Article

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center