Format

Send to

Choose Destination
J Biol Chem. 2004 Sep 17;279(38):39705-9. Epub 2004 Jul 23.

Protective effect of phosphatidylinositol 4,5-bisphosphate against cortical filamentous actin loss and insulin resistance induced by sustained exposure of 3T3-L1 adipocytes to insulin.

Author information

1
Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202, USA.

Abstract

Muscle and fat cells develop insulin resistance when cultured under hyperinsulinemic conditions for sustained periods. Recent data indicate that early insulin signaling defects do not fully account for the loss of insulin action. Given that cortical filamentous actin (F-actin) represents an essential aspect of insulin regulated glucose transport, we tested to see whether cortical F-actin structure was compromised during chronic insulin treatment. The acute effect of insulin on GLUT4 translocation and glucose uptake was diminished in 3T3-L1 adipocytes exposed to a physiological level of insulin (5 nm) for 12 h. This insulin-induced loss of insulin responsiveness was apparent under both low (5.5 mm) and high (25 mm) glucose concentrations. Microscopic and biochemical analyses revealed that the hyperinsulinemic state caused a marked loss of cortical F-actin. Since recent data link phosphatidylinositol 4,5-bisphosphate (PIP(2)) to actin cytoskeletal mechanics, we tested to see whether the insulin-resistant condition affected PIP(2) and found a noticeable loss of this lipid from the plasma membrane. Using a PIP(2) delivery system, we replenished plasma membrane PIP(2) in cells following the sustained insulin treatment and observed a restoration in cortical F-actin and insulin responsiveness. These data reveal a novel molecular aspect of insulin-induced insulin resistance involving defects in PIP(2)/actin regulation.

PMID:
15277534
PMCID:
PMC2413414
DOI:
10.1074/jbc.C400171200
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center