Send to

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2004 Aug 15;63(3):545-52.

Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes.

Author information

Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany.



Heme oxygenases (HO) are the rate-limiting enzymes in heme degradation, catalyzing the breakdown of heme to equimolar quantities of biliverdin (BV), carbon monoxide (CO), and ferrous iron. The inducible HO isoform, HO-1, confers protection against ischemia/reperfusion (I/R)-injury in the heart. We hypothesized that HO-1 and its catalytic by-products constitute an antihypertrophic signaling module in cardiac myocytes.


The G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) (30 nmol/l) stimulated a robust hypertrophic response in cardiac myocytes isolated from 1- to 3-day-old Sprague-Dawley rats, with increases in cell surface area (planimetry), sarcomere assembly (confocal laser scanning microscopy), and prepro-atrial natriuretic peptide (ANP) mRNA expression. Adenoviral overexpression of HO-1, but not beta-galactosidase, significantly inhibited ET-1 induced cardiac myocyte hypertrophy. The antihypertrophic effects of HO-1 were mimicked by BV (10 micromol/l) and the CO-releasing molecule [Ru(CO)3Cl2]2 (10 micromol/l), strongly suggesting a critical involvement of BV and CO in the antihypertrophic effects of HO-1. Both BV and CO suppressed extracellular signal-regulated kinases (ERK1/ERK2) and p38 mitogen-activated protein kinase (MAPK) activation by ET-1 stimulation. Moreover, BV and CO inhibited the prohypertrophic calcineurin/NFAT pathway. This inhibition occurred upstream from calcineurin because BV and CO inhibited NFAT activation in response to ET-1 stimulation but not in response to adenoviral expression of a constitutively active calcineurin mutant. Upstream-inhibition of the calcineurin/NFAT pathway by CO occurred independent from cGMP and cGMP-dependent protein kinase type I (PKG I).


Heme oxygenase-1 and its catalytic by-products, BV and CO, constitute a novel antihypertrophic signaling pathway in cardiac myocytes. Biliverdin and CO inhibition of MAPKs and calcineurin/NFAT signaling provides a mechanistic framework how heme degradation products may promote their antihypertrophic effects.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center