Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Soc Mass Spectrom. 2004 Aug;15(8):1237-47.

Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry.

Author information

1
Section of Mass Spectrometry, Laboratory of Membrane Biophysics and Biochemistry, NIAAA, NIH, Bethesda, Maryland 20892, USA.

Abstract

Serum albumin is the principal transporter of fatty acids that are otherwise insoluble in circulating plasma. While the crystal structure of human serum albumin (HSA) as well as its binding with fatty acids has been characterized, the three dimensional structure of bovine serum albumin (BSA) has not been determined although both albumins share 76% sequence homology. In this study we used mass spectrometry coupled with chemical cross-linking, to probe the tertiary structure of BSA. BSA was modified with lysine specific cross-linkers, bis(sulfosuccinimidyl) suberate (BS(3)), disuccinimidyl suberate (DSS) or disuccinimidyl glutarate (DSG), digested with trypsin and analyzed by tandem mass spectrometry. With O-18 labeling during the digestion, through-space cross-linked peptides were readily identified in mass spectra by a characteristic 8 Da shift. From the cross-linked peptides identified in this study, we found that 12 pairs of lysine residues were separated within 20 A, while 5 pairs were spaced between 20 and 24 A. The spatial distance constraints generated from five K-K pairs in BSA were consistent with the corresponding distance obtained from the crystal structure of HSA, although only six equivalent K-K pairs could be compared. According to our data, the distance between K235 of IIA and K374 of IIB domain in BSA was farther by 7-11 A than that expected from the crystal structure of HSA, suggesting structural differences between BSA and HSA in this region. The distance constraints obtained for lysine residues using various cross-linkers should be valuable in assisting the determination of the 3-D structure of BSA.

PMID:
15276171
DOI:
10.1016/j.jasms.2004.05.004
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for Elsevier Science
    Loading ...
    Support Center