Format

Send to

Choose Destination
See comment in PubMed Commons below
Genet Mol Res. 2004 Jun 30;3(2):195-212.

Evolution by polyploidy and gene regulation in Anura.

Author information

1
Laboratório de Genética, Instituto Butantan, São Paulo, SP, Brasil. mlbecak@butantan.gov.br

Abstract

The evolution of the metazoa has been characterized by gene redundancy, generated by polyploidy, tandem duplication and retrotransposition. Polyploidy can be detected by looking for duplicated chromosomes or segments of orthologous chromosomes in post-polyploid animals. It has been proposed that the evolutionary role of polyploidy is to provide extra-copies of genes, whose subsequent alteration leads to new functions, increased biological complexity, and, ultimately, speciation. We review the theory of evolution by genome duplication, basing our arguments on findings from autopolyploid anurans and fish, undergoing post-polyploidy diploidization. We conclude that: 1) the high genetic variability of autotetraploid anurans is a result of tetrasomic expression, based on studies of isozymes and other proteins. 2) Epigenetic mechanisms mediate the reduced expression or silencing of redundant copies of genes in the regulation of gene expression of these tetraploids. This conclusion is based on data concerning ribosomal and hemoglobin gene activity. 3) Duplication of the genome may have occurred more than once in the phylogeny of the anurans, as exemplified by 4n and 8n Leptodactylidae species.

PMID:
15266394
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Fundacao de Pesquisas Cientificas de Ribeirao Preto
    Loading ...
    Support Center