Send to

Choose Destination
J Cell Sci. 2004 Aug 1;117(Pt 17):3875-86. Epub 2004 Jul 20.

Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast.

Author information

Cell Biology Group and CREST Research Project, Kansai Advanced Research Center, National Institute of Information and Communication Technology, 588-2 Iwaoka-cho, Iwaoka, Nishi-ku, Kobe 651-2492, Japan.


Meiosis is a process of importance for sexually reproducing eukaryotic organisms. In the fission yeast Schizosaccharomyces pombe, meiosis normally proceeds in a diploid zygote which is produced by conjugation of haploid cells of opposite mating types. We demonstrate that activation of the pheromone-responsive MAPK, Spk1, by the ectopic expression of a constitutively active form of Byr1 (MAPKK for Spk1) induced the cells to undergo meiosis while in the haploid state. Moreover, the induction of meiosis required Mei2 (a key positive regulator of meiosis), but did not require Mei3; Mei3 is normally required to inactivate the Pat1 kinase (a negative regulator of Mei2) thereby allowing Mei2 to drive meiosis. Therefore, expression of a constitutively active form of Byr1 activates Mei2 without the need of Mei3. In cells induced to undergo meiosis by activating the Spk1 MAPK signaling pathway, telomeres clustered at the spindle pole body (SPB) and centromeres detached normally from the SPB during meiotic prophase, and the cells showed the correct segregation of sister chromatids during meiotic divisions. In contrast, in meiosis induced by inactivation of Pat1, sister chromatids segregate precociously during the first meiotic division. Thus, these results suggest that activation of Spk1 drives meiosis in S. pombe.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center