Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Genet Dev. 2004 Aug;14(4):343-50.

Integrating transcriptional and signalling networks during muscle development.

Author information

  • 1Developmental Biology and Gene Expression Programmes, EMBL, Heidelberg, Germany.


A fundamental aspect of developmental decisions is the ability of groups of cells to obtain the competence to respond to different signalling inputs. This information is often integrated with intrinsic transcriptional networks to produce diverse developmental outcomes. Studies in Drosophila are starting to reveal a detailed picture of the regulatory circuits controlling the subdivision of the dorsal mesoderm, which gives rise to diverse muscle types including cardioblasts, pericardial cells, body wall muscle and gut muscle. The combination of a common set of mesoderm autonomous transcription factors (e.g. Tinman and Twist) and spatially restricted inductive signals (e.g. Dpp and Wg) subdivide the dorsal mesoderm into different competence domains. The integration of additional signalling inputs with localised repression within these competence domains results in diverse transcriptional responses within neighbouring cells, which in turn generates muscle diversity.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center