Send to

Choose Destination
See comment in PubMed Commons below
Chromosoma. 2004 Sep;113(2):62-8. Epub 2004 Jul 16.

Genomic instability in both wild-type and telomerase null MEFs.

Author information

Graduate Program in Human Genetics, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.


To examine chromosome instability in the absence of telomerase, we established mouse embryonic fibroblast (MEF) lines from late generation mTR-/- and wild-type animals and examined metaphases using telomere fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY). In early passages, mTR-/- G6 cell lines showed more chromosome ends with no telomere signal, more chromosome end-to-end fusions and greater radiosensitivity than wild-type lines. At later passages, however, the rate of genomic instability in the wild-type MEFs increased to a level similar or higher than seen in the mTR-/- G6 cell lines. This high degree of instability in wild-type MEF lines suggests that post-crisis MEFs should not be considered genetically defined cell lines. Surprisingly, the increased radiosensitivity seen in early passage mTR-/- G6 cultures was lost after crisis. Both post-crisis mTR-/- G6 MEFs and wild-type MEFs showed loss of p53 and gamma-H2AX phosphorylation in response to irradiation, indicating a loss of DNA damage checkpoints.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center