Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10961-6. Epub 2004 Jul 15.

A force-dependent switch reverses type IV pilus retraction.

Author information

1
Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027.

Abstract

Type IV pilus dynamics is important for virulence, motility, and DNA transfer in a wide variety of prokaryotes. The type IV pilus system constitutes a very robust and powerful molecular machine that transports pilus polymers as well as DNA through the bacterial cell envelope. In Neisseria gonorrhoeae, pilus retraction is a highly irreversible process that depends on PilT, an AAA ATPase family member. However, when levels of PilT are reduced, the application of high external forces (F = 110 +/- 10 pN) induces processive pilus elongation. At forces of >50 pN, single pili elongate at a rate of v = 350 +/- 50 nm/s. For forces of <50 pN, elongation velocity depends strongly on force and relaxation causes immediate retraction. Both pilus retraction and force-induced elongation can be modeled by chemical kinetics with same step length for the rate-limiting translocation step. The model implies that a force-dependent molecular switch can induce pilus elongation by reversing the retraction mechanism.

PMID:
15256598
PMCID:
PMC503726
DOI:
10.1073/pnas.0402305101
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center