Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10961-6. Epub 2004 Jul 15.

A force-dependent switch reverses type IV pilus retraction.

Author information

Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027.


Type IV pilus dynamics is important for virulence, motility, and DNA transfer in a wide variety of prokaryotes. The type IV pilus system constitutes a very robust and powerful molecular machine that transports pilus polymers as well as DNA through the bacterial cell envelope. In Neisseria gonorrhoeae, pilus retraction is a highly irreversible process that depends on PilT, an AAA ATPase family member. However, when levels of PilT are reduced, the application of high external forces (F = 110 +/- 10 pN) induces processive pilus elongation. At forces of >50 pN, single pili elongate at a rate of v = 350 +/- 50 nm/s. For forces of <50 pN, elongation velocity depends strongly on force and relaxation causes immediate retraction. Both pilus retraction and force-induced elongation can be modeled by chemical kinetics with same step length for the rate-limiting translocation step. The model implies that a force-dependent molecular switch can induce pilus elongation by reversing the retraction mechanism.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center