Format

Send to

Choose Destination
See comment in PubMed Commons below
Heredity (Edinb). 2004 Nov;93(5):423-33.

Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens).

Author information

1
Section for Animal Ecology, Department of Ecology, Lund University, SE-223 62 Lund, Sweden. erik.svensson@zooekol.lu.se

Abstract

The importance of sexual selection in population divergence is of much interest, mainly because it is thought to cause reproductive isolation and hence could lead to speciation. Sexually selected traits have been hypothesized to diverge faster between populations than other traits, presumably because of differences in the strength, mechanism or dynamics of selection. We investigated this by quantifying population divergence in eight morphological characters in 12 south Swedish populations of a sexually dimorphic damselfly, the banded demoiselle (Calopteryx splendens). The morphological characters included a secondary sexual character, the male melanized wing spot, which has an important function in both inter- and intrasexual selection. In addition, we investigated molecular population divergence, revealed by amplified fragment length polymorphism (AFLP) analysis. Molecular population divergence was highly significant among these Northern European populations (overall F(st)=0.054; pairwise population F(st)'s ranged from approximately 0 to 0.13). We found evidence for isolation-by-distance (r=0.70) for the molecular markers and a significant correlation between molecular and phenotypic population divergence (r=0.39). One interpretation is that population divergence for the AFLP loci are affected by genetic drift, but is also indirectly influenced by selection, due to linkage with loci for the phenotypic traits. Field estimates of sexual and natural selection from two of the populations revealed fairly strong sexual selection on wing spot length, indicating that this trait has the potential to rapidly diverge, provided that variation is heritable and the observed selection is chronic.

PMID:
15254490
DOI:
10.1038/sj.hdy.6800519
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center