Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Sep 10;279(37):38749-54. Epub 2004 Jul 9.

Helix induction in antimicrobial peptides by alginate in biofilms.

Author information

1
Division of Structural Biology and Biochemistry, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada.

Abstract

Bacterial exopolysaccharides provide protection against phagocytosis, opsonization, and dehydration and act as a major structural component of the extracellular matrix in biofilms. They contribute to biofilm-related resistance by acting as a diffusion barrier to positively charged antimicrobial agents including cationic antimicrobial peptides (CAPs). We previously created novel CAPs consisting of a nonamphipathic hydrophobic core flanked by Lys residues and containing a Trp residue in the hydrophobic segment as a fluorescent probe. Peptides of this type above a specific hydrophobicity threshold insert spontaneously into membranes and have antimicrobial activity against Gram-positive and Gram-negative bacteria at micromolar concentrations. Here we show that alginate, a polymer of beta-d-mannuronate and alpha-l-guluronate secreted by the cystic fibrosis pathogen Pseudomonas aeruginosa, induces an alpha-helical conformation detected by circular dichroism spectroscopy and blue shifts in Trp fluorescence maxima in peptides above the hydrophobicity threshold, changes typically observed upon association of such peptides with nonpolar (membrane) environments. Parallel effects were observed in the archetypical CAPs magainin II amide and cecropin P1. Fluorescence resonance energy transfer studies indicated that alginate induces peptide-peptide association only in peptides above the hydrophobicity threshold, suggesting that the hydrophilic alginate polymer behaves as an "auxiliary membrane" for the bacteria, demonstrating a unique protective role for biofilm matrices against CAPs.

PMID:
15247257
DOI:
10.1074/jbc.M406044200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center