Extended heat-fluctuation theorems for a system with deterministic and stochastic forces

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056121. doi: 10.1103/PhysRevE.69.056121. Epub 2004 May 28.

Abstract

Heat fluctuations over a time tau in a nonequilibrium stationary state and in a transient state are studied for a simple system with deterministic and stochastic components: a Brownian particle dragged through a fluid by a harmonic potential which is moved with constant velocity. Using a Langevin equation, we find the exact Fourier transform of the distribution of these fluctuations for all tau. By a saddle-point method we obtain analytical results for the inverse Fourier transform, which, for not too small tau, agree very well with numerical results from a sampling method as well as from the fast Fourier transform algorithm. Due to the interaction of the deterministic part of the motion of the particle in the mechanical potential with the stochastic part of the motion caused by the fluid, the conventional heat fluctuation theorem is, for infinite and for finite tau, replaced by an extended fluctuation theorem that differs noticeably and measurably from it. In particular, for large fluctuations, the ratio of the probability for absorption of heat (by the particle from the fluid) to the probability to supply heat (by the particle to the fluid) is much larger here than in the conventional fluctuation theorem.