Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2004 Aug 20;95(4):433-40. Epub 2004 Jul 8.

Program of cell survival underlying human and experimental hibernating myocardium.

Author information

1
Department of Cell Biology and Molecular Medicine and the Cardiovascular Research Institute, University of Medicine and Dentistry New Jersey, Newark 07103, USA.

Abstract

Hibernating myocardium refers to chronically dysfunctional myocardium in patients with coronary artery disease in which cardiac viability is maintained and whose function improves after coronary revascularization. It is our hypothesis that long-term adaptive genomic mechanisms subtend the survival capacity of this ischemic myocardium. Therefore, the goal of this study was to determine whether chronic repetitive ischemia elicits a gene program of survival protecting hibernating myocardium against cell death. Accordingly, we measured the expression of survival genes in hibernating myocardium, both in patients surgically treated for hibernation and in a chronic swine model of repetitive ischemia reproducing the features of hibernation. Human hibernating myocardium was characterized by an upregulation of genes and corresponding proteins involved in anti-apoptosis (IAP), growth (VEGF, H11 kinase), and cytoprotection (HSP70, HIF-1alpha, GLUT1). In the swine model, the same genes and proteins were upregulated after repetitive ischemia, which was accompanied by a concomitant decrease in myocyte apoptosis. These changes characterize viable tissue, because they were not found in irreversibly injured myocardium. Our report demonstrates a novel mechanism by which the activation of an endogenous gene program of cell survival underlies the sustained viability of the hibernating heart. Potentially, promoting such a program offers a novel opportunity to salvage postmitotic tissues in conditions of ischemia.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center