Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2004 Jul 30;320(3):887-92.

Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells.

Author information

1
Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Republic of Korea.

Abstract

Cadmium (Cd), a ubiquitous heavy metal, has been shown to accumulate in the central nervous system, especially outside of the blood-brain barrier (BBB), suggesting a potential toxicity to nervous tissue. Thus, we investigated the effect of Cd on intercellular adhesion molecule-1 (ICAM-1) expression, as an indicator of BBB injury, in mouse brain microvessel endothelial cells (bEnd.3 cells). The treatment with Cd increased the expression of ICAM-1 at the levels of protein and mRNA, and these increases were almost completely inhibited by a specific NF-kappaB inhibitor SN50. The treatment with Cd induced the translocation of NF-kappaB from cytosolic to membrane fraction and increased DNA binding activity of NF-kappaB, and this NF-kappaB activation was inhibited by SN50. Interestingly, Cd did not trigger the degradation of IkappaBalpha, suggesting that Cd-induced ICAM-1 expression is mediated through IkappaBalpha degradation-independent pathway. Instead, tyrosine phosphorylation of IkappaBalpha was significantly elevated by Cd treatment, and this elevation was blocked by genistein, a protein tyrosine kinase inhibitor. In summary, the present results suggest that Cd stimulates the expression of ICAM-1 in bEnd.3 cells, via NF-kappaB activation that is mediated by the tyrosine phosphorylation of IkappaBalpha.

PMID:
15240131
DOI:
10.1016/j.bbrc.2004.05.218
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center