Format

Send to

Choose Destination
Cytogenet Genome Res. 2004;105(2-4):292-301.

Spatial genome organization during T-cell differentiation.

Author information

1
National Cancer Institute, NIH, Bethesda, MD 20892, USA.

Abstract

The spatial organization of genomes within the mammalian cell nucleus is non-random. The functional relevance of spatial genome organization might be in influencing gene expression programs as cells undergo changes during development and differentiation. To gain insight into the plasticity of genomes in space and time and to correlate the activity of specific genes with their nuclear position, we systematically analyzed the spatial genome organization in differentiating mouse T-cells. We find significant global reorganization of centromeres, chromosomes and gene loci during the differentiation process. Centromeres were repositioned from a preferentially internal distribution in undifferentiated cells to a preferentially peripheral position in differentiated CD4+ and CD8+ cells. Chromosome 6, containing the differentially expressed T-cell markers CD4 and CD8, underwent differential changes in position depending on whether cells differentiated into CD4+ or CD8+ thymocytes. Similarly, the two marker loci CD4 and CD8 showed distinct behavior in their position relative to the chromosome 6 centromere at various stages of differentiation. Our results demonstrate that significant spatial genome reorganization occurs during differentiation and indicate that the relationship between dynamic genome topology and single gene regulation is highly complex.

PMID:
15237218
DOI:
10.1159/000078201
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center