Send to

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2004 Jul;10(1):57-66.

Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain.

Author information

Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.


Neuropathic pain after spinal cord injury (SCI) represents a difficult problem that is commonly refractory to conventional medical management. To determine if spinal release of gamma-amino butyric acid (GABA) could reduce below-level central neuropathic pain after SCI, we constructed a replication-incompetent herpes simplex virus (HSV)-based vector encoding one isoform of human glutamic acid decarboxylase (GAD67). Dorsal root ganglion (DRG) neurons transduced in vitro or in vivo by subcutaneous inoculation produced GAD and released GABA constitutively. T13 spinal cord hemisection resulted in central neuropathic pain manifested by mechanical allodynia and thermal hyperalgesia. Subcutaneous inoculation of the vector into both feet reduced both manifestations of below-level SCI pain; the vector-mediated effect was partially reversed by intrathecal bicuculline or phaclofen at doses that did not affect thresholds in normal or injured uninoculated animals. Vector-mediated GABA release attenuated the increase in spinal calcitonin gene-related peptide immunoreactivity caused by cord hemisection. These results suggest that HSV-mediated gene transfer to DRG could be used to treat below-level central neuropathic pain after incomplete SCI.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center