Send to

Choose Destination
FEBS Lett. 2004 Jul 2;569(1-3):140-8.

A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens.

Author information

Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine-CP242, Bd. du Triomphe, B-1050 Brussels, Belgium.


Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd(2+) tolerance by screening for T. caerulescens genes, which alleviate Cd(2+) toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C-terminal part of a heavy metal ATPase. The corresponding TcHMA4 full-length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4-C and AtHMA4-C cDNAs encoding the C-termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4-C compared to AtHMA4-C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd(2+) transport and possibly in the Cd hyperaccumulation character.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center