Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2004 Aug;47(2):233-42.

Three-amino acid motifs of urocortin II and III determine their CRF receptor subtype selectivity.

Author information

Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Goettingen, Germany.


Corticotropin-releasing factor (CRF) and the CRF-like peptide urocortin I (UcnI) exert their activity through two different CRF receptors, CRF1 and CRF2. Recently, UcnII and UcnIII have been discovered as potential endogenous agonists selective for CRF2 known to be involved in brain functions such as learning and anxiety, as well as in cardiovascular functions. A structure-affinity relationship study using chimeric peptides was designed to characterize mouse UcnII (mUcnII) and mUcnIII further and to investigate the structural basis of their receptor subtype selectivity. In the framework of this study, mUcnII (IC50 = 4.4 nM) but not mUcnIII was identified as high-affinity ligand for the rat CRF binding protein. Such affinity had previously not been observed for the human version of this protein. On the basis of secondary structure predictions, it was hypothesized that the amino acid motifs Pro-Ile-Gly of mUcnII and Pro-Thr-Asn of mUcnIII decrease alpha-helicity and thereby impair binding to CRF1. In support of this hypothesis, binding affinity to CRF1 of the chimeric peptides [Pro11Ile12Gly13]h/rCRF, [Pro11Thr12Asn13]h/rCRF, and the corresponding rUcnI analogs was found to be decreased by three orders of magnitude, whereas binding affinity to CRF2 was much less affected. The dramatic decrease in binding affinity to CRF1 correlated with a decrease in alpha-helicity as indicated by the data of circular dichroism spectroscopy.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center