Format

Send to

Choose Destination
J Comp Neurol. 2004 Jul 26;475(3):391-405.

Histaminergic neurons in the central and peripheral nervous system of gastropods (Helix, Lymnaea): an immunocytochemical, biochemical, and electrophysiological approach.

Author information

1
Department of Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, H-8237 Tihany, Hungary.

Abstract

Distribution, chemical-neuroanatomy, concentration, and uptake-release properties of histamine (HA)-containing neurons and the possible physiological effects of HA in the central and peripheral nervous system of the pulmonate snails, Helix pomatia and Lymnaea stagnalis, are described. In the CNS of both species, the distribution pattern of HA-immunoreactive (HA-IR) neurons was similar. In both species the majority were located in the buccal, cerebral, and pedal ganglia. In Helix, approximately 400 HA-IR neurons were seen, whereas in Lymnaea approximately 130 labeled cells were visualized. The neuropils, connectives, commissures, several peripheral nerves, and a part of the peripheral tissues (lip and foot of both species and the upper tentacles of Helix) were innervated by HA-IR elements. Numerous sensory cells were found in the tentacles, lip, and statocysts. The HA concentration values assayed by HPLC ranged from 4.8 to 47.4 pmol/mg in the different central ganglia of Helix, and from 4.3 to 18.6 pmol/mg in Lymnaea CNS, whereas the peripheral tissues contained 0.33-1 pmol/mg HA in Helix and 0.26-0.46 pmol/mg in Lymnaea. In the Lymnaea CNS, a high-affinity (37.6 microM), single component 3H-HA uptake system was demonstrated. 3H-HA release evoked by either electrical stimulation or 100 mM K+ could be prevented in Ca2+-free physiological solution. Voltage-clamp experiments indicated specific changes caused by HA in the membrane conductance of identified central neurons of Helix and Lymnaea. Exogenously applied 10(-5) M HA resulted in the acceleration of locomotion (gliding by foot cilia) of Lymnaea. The findings suggest an important signaling role of HA, described here for the first time, in the nervous system of higher-order, pulmonate, gastropods, involving efferent, integrative, and sensory functions. The data can also be applied as a background for further specification of HA in the regulation of different behaviors in these species.

PMID:
15221953
DOI:
10.1002/cne.20171
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center