Format

Send to

Choose Destination
Neuroscience. 2004;127(1):233-42.

Cocaine-induced Fos expression in rat striatum is blocked by chloral hydrate or urethane.

Author information

1
Behavioral Neuroscience Branch, Intramural Research Program, The National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.

Abstract

Anesthetics used in electrophysiological studies alter the effects of cocaine and amphetamine on neural activity in the striatum. However, the mechanism underlying this alteration has not been established. In the present study, we examined the effects of anesthetics on cocaine-induced neural activity in the striatum. We first assayed the ability of 20 mg/kg cocaine to induce Fos expression in the striatum following pretreatment with 400 mg/kg chloral hydrate or 1.3 g/kg urethane, two of the most commonly used anesthetics for in vivo electrophysiology. Chloral hydrate blocked, while urethane strongly attenuated cocaine-induced Fos expression without affecting basal levels of expression. We then examined dopaminergic and glutamatergic mechanisms for anesthetic effects on cocaine-induced Fos expression. Chloral hydrate and urethane did not attenuate basal or cocaine-induced increases of dopamine levels as assessed by microdialysis in dorsal striatum. In contrast, chloral hydrate attenuated glutamatergic neurotransmission as assessed by microdialysis in the presence of the glutamate transport blocker L-trans-pyrrolidone-2,4-dicarboxylic acid. Chloral hydrate attenuated basal levels of glutamate by 70%, while cocaine had no effect on glutamate levels. Since glutamate levels were tetrodotoxin-sensitive, the majority of glutamate measured in our assay was by synaptic release. To assess a causal role for a reduction of glutamatergic neurotransmission in anesthetic effects on cocaine-induced Fos expression, we injected the glutamate receptor agonists AMPA and NMDA into the dorsal striatum of chloral hydrate-anesthetized rats. The glutamate receptor agonists partially reinstated cocaine-induced Fos expression in anesthetized rats. We conclude anesthetics attenuate cocaine-induced neuronal activity by reducing glutamatergic neurotransmission.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center