Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2004 Jul;22(3):1076-83.

Gradients of dopamine D1- and D2/3-binding sites in the basal ganglia of pig and monkey measured by PET.

Author information

1
PET Centre, Aarhus University Hospitals, and Centre of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark. pedro@pet.auh.dk

Abstract

The distributions of dopamine D1 and D2/3 binding sites in living brain have not been compared directly using positron emission tomography (PET). To map these binding sites, we first optimized methods for the assay of dopamine receptors in brain of Göttingen miniature pigs. The binding potentials (pB) of [11C]NNC 112 for dopamine D1 receptors and [11C]raclopride for dopamine D2/3 receptors were calculated in pig striatum volumes of interest using metabolite corrected arterial inputs or using cerebellum as a non-binding reference region. Depending upon the method for quantitation, the pB for [11C]NNC 112 was 1.2-5.1 in pig striatum, whereas the pB for [11C]raclopride was 1.0-1.8. We used the reference tissue method of Logan to calculate pB maps for the two tracers. The maps were co-registered to the common stereotaxic space for the pig brain and normalized to a global mean for pB in striatum; t-maps showed that dopamine D1 binding was relatively more abundant in the ventral-anterior striatum of the pig, while dopamine D2/3 binding was greater in the dorsal striatum. Similar comparisons were made for the pBs of [11C]Sch 23390 for dopamine D1 receptors and for [11C]raclopride in the brain of six rhesus monkeys. The magnitudes of pB for both binding sites in monkey brain were close to those in the pig. Consistent with the pig results, there were distinct gradients in the distributions of the two binding sites in monkey brain: D1 binding predominated in the ventral striatum, whereas D2/3 binding was relatively greater in the dorsal-posterior striatum. Gradients of dopamine receptor concentration within the striatum may be a general phenomenon of mammalian brain.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center