Format

Send to

Choose Destination
Clin Cancer Res. 2004 Jun 15;10(12 Pt 1):4176-84.

Metabotropic glutamate receptor 4-mediated 5-Fluorouracil resistance in a human colon cancer cell line.

Author information

1
Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea.

Abstract

PURPOSE:

5-Fluorouracil (5-FU) has been the mainstay treatment for colorectal cancer for the past few decades. However, as with other cancers, development of 5-FU resistance has been a major obstacle in colorectal cancer chemotherapy. The purpose of this study was to gain further understanding of the mechanisms underlying 5-FU resistance in colorectal cancer cells.

EXPERIMENTAL DESIGN:

A 5-FU-resistant cell line was established from the human colon cancer cell line SNU-769A. Protein extracts from these two cell lines (parent and resistant) were analyzed using comparative proteomics to identify differentially expressed proteins.

RESULTS:

5-FU-resistant human colon cancer cells were found to overexpress metabotropic glutamate receptor 4 (mGluR4). Other experiments showed cellular resistance to 5-FU (i.e., cell survival) was altered by the mGluR4 agonist l-2-amino-4-phosphonobutyric acid (L-AP 4), and by the mGluR4 antagonist (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP 4), in that L-AP 4 increased 5-FU resistance in SNU-769A cells, whereas MAP 4 ablated 5-FU resistance in 5-FU-resistant cells. However, there was no significant effect of L-AP 4 or MAP 4 on basal cAMP and thymidylate synthase levels. Interestingly, 5-FU down-regulated mGluR4 expression, and MAP 4 suppressed proliferation in both cell lines.

CONCLUSIONS:

We here report mGluR4 expression in human colon cancer cell line, which provides further evidence for extra-central nervous system expression of glutamate receptors. Overexpression of mGluR4 may tentatively be responsible for 5-FU resistance and, although activation by agonist promotes cell survival in the presence of 5-FU, decreased mGluR4 expression or inactivation by antagonist contributes to cell death.

PMID:
15217955
DOI:
10.1158/1078-0432.CCR-1114-03
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center