Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Neurosci. 2004;27:247-78.

Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro.

Author information

1
Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA. roger.traub@downstate.edu

Abstract

A variety of population oscillations, at frequencies approximately 5 Hz up to 200 Hz and above, can be induced in hippocampal slices either by (a) manipulation of the ionic environment, or (b) by stimulation of metabotropic receptors; brief oscillations can even occur spontaneously. In this review, we consider in vitro theta (4-12 Hz), gamma/beta (15-70 Hz), and very fast oscillations (VFO) (>70 Hz). Many in vitro oscillations are gated by synaptic inhibition but are influenced by electrical coupling as well; one type depends solely on electrical coupling. For some oscillations dependent upon inhibition, the detailed firing patterns of interneurons can influence long-range synchronization. Two sorts of electrical coupling are important in modulating or generating various in vitro oscillations: (a) between interneurons, primarily between dendrites; and (b) between axons of pyramidal neurons. VFO can exist in isolation or can act as generators of gamma frequency oscillations. Oscillations at gamma frequencies and below probably create conditions under which synaptic plasticity can occur, between selected neurons-even those separated by significant axonal conduction delays.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center