Format

Send to

Choose Destination
Biochem J. 2004 Oct 15;383(Pt 2):249-57.

Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter.

Author information

1
Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, USA.

Abstract

The hRFC (human reduced folate carrier) is ubiquitously but differentially expressed in human tissues and its levels are regulated by up to seven non-coding regions (A1, A2, A, B, C, D and E) and at least four promoters. For the hRFC-B basal promoter, regulation involves binding of Sp (specificity protein) transcription factors to a critical GC-box. By transiently transfecting HT1080 cells with 5'- and 3'-deletion constructs spanning 1057 bp of upstream sequence, a transcriptionally important region was localized to 158 bp flanking the transcriptional start sites. By gel shift and chromatin immunoprecipitation assays, USF (upstream stimulatory factor), Sp1 and Ikaros-related proteins were bound to consensus elements (one E-box, two GC-box and three Ikaros) within this region. The functional importance of these elements was confirmed by transient tranfections of HT1080 cells with hRFC-B reporter constructs in which they were mutated, and by co-transfections of Drosophila Mel-2 cells with wild-type hRFC-B promoter and expression constructs for USF1, USF2a, Sp1 and Ikaros 2 and 8. Both USF1 and Sp1 proteins transactivated the hRFC-B promoter. Sp1 combined with USF1 resulted in a synergistic transactivation. Identical results were obtained with USF2a. Ikaros 2 was a repressor of hRFC-B promoter activity whose effects were partly reversed by the dominant-negative Ikaros 8. In HT1080 cells, transfection with Ikaros 2 decreased endogenous hRFC-B transcripts, whereas USF1 and Sp1 increased transcript levels. Ikaros 2 also decreased reporter gene activity and levels of acetylated chromatin associated with the endogenous promoter. Collectively, these results identify transcriptionally important regions in the hRFC-B promoter that include multiple GC-box, Ikaros and E-box elements. Our results also suggest that co-operative interactions between transcription factors Sp1 and USF are essential for high-level hRFC-B transactivation and imply that these effects are modulated by the family of Ikaros proteins and by histone acetylation.

PMID:
15214842
PMCID:
PMC1134065
DOI:
10.1042/BJ20040414
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center