Send to

Choose Destination
Chemistry. 2004 Jun 21;10(12):3033-42.

Strong intramolecular secondary si.N bonds in trifluorosilylhydrazines.

Author information

Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 8, 48149 Münster, Germany.


The simple silylhydrazines F(3)SiN(Me)NMe(2) (1), F(2)Si(N(Me)NMe(2))(2) (2), and F(3)SiN(SiMe(3))NMe(2) (3) have been prepared by reaction of SiF(4) with LiN(Me)NMe(2) and LiN(SiMe(3))NMe(2), while F(3)SiN(SnMe(3))NMe(2) (4) was prepared from SiF(4) and (Me(3)Sn)(2)NNMe(2) (5). The compounds were characterized by gas-phase IR and multinuclear NMR spectroscopy ((1)H, (13)C, (14/15)N, (19)F, (29)Si, (119)Sn), as well as by mass spectrometry. The crystal structures of compounds 1-5 were determined by X-ray crystallography. The structures of free molecules 1 and 3 were determined by gas-phase electron diffraction. The structures of 1, 2, and 4 were also determined by ab initio calculations at the MP2/6-311+G** level of theory. These structural studies constitute the first experimental proof for the presence of strong Si.N beta-donor-acceptor bonds between the SiF(3) and geminal NMe(2) groups in silylhydrazines. The strength of these non-classical Si.N interactions is strongly dependent on the nature of the substituent at the alpha-nitrogen atom of the SiNN unit, and has the order 3>4>1. The valence angles at these extremely deformed alpha-nitrogen atoms, and the Si.N distances are (crystal/gas): 1 104.2(1)/106.5(4) degrees, 2.438(1)/2.510(6) A; 3 83.6(1)/84.9(4) degrees, 2.102(1)/2.135(9) A; 4 89.6(1) degrees, 2.204(2) A.


Supplemental Content

Loading ...
Support Center