Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2004 Jul;142(6):961-72. Epub 2004 Jun 21.

Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries.

Author information

Department of Physiology, The Water and Salt Research Center, University of Aarhus, Denmark.


1 Heptanol, 18alpha-glycyrrhetinic acid (18alphaGA) and 18beta-glycyrrhetinic acid (18betaGA) are known blockers of gap junctions, and are often used in vascular studies. However, actions unrelated to gap junction block have been repeatedly suggested in the literature for these compounds. We report here the findings from a comprehensive study of these compounds in the arterial wall. 2 Rat isolated mesenteric small arteries were studied with respect to isometric tension (myography), [Ca2+]i (Ca(2+)-sensitive dyes), membrane potential and--as a measure of intercellular coupling--input resistance (sharp intracellular glass electrodes). Also, membrane currents (patch-clamp) were measured in isolated smooth muscle cells (SMCs). Confocal imaging was used for visualisation of [Ca2+]i events in single SMCs in the arterial wall. 3 Heptanol (150 microm) activated potassium currents, hyperpolarised the membrane, inhibited the Ca2+ current, and reduced [Ca2+]i and tension, but had little effect on input resistance. Only at concentrations above 200 microm did heptanol elevate input resistance, desynchronise SMCs and abolish vasomotion. 4 18betaGA (30 microm) not only increased input resistance and desynchronised SMCs but also had nonjunctional effects on membrane currents. 18alphaGA (100 microm) had no significant effects on tension, [Ca2+]i, total membrane current and synchronisation in vascular smooth muscle. 5 We conclude that in mesenteric small arteries, heptanol and 18betaGA have important nonjunctional effects at concentrations where they have little or no effect on intercellular communication. Thus, the effects of heptanol and 18betaGA on vascular function cannot be interpreted as being caused only by effects on gap junctions. 18alphaGA apparently does not block communication between SMCs in these arteries, although an effect on myoendothelial gap junctions cannot be excluded.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center