Send to

Choose Destination
See comment in PubMed Commons below
Genomics. 2004 Jul;84(1):211-7.

A computational approach to measuring coherence of gene expression in pathways.

Author information

Laboratory of Population Genetics, National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA.


This study uses a computational approach to analyze coherence of expression of genes in pathways. Microarray data were analyzed with respect to coherent gene expression in a group of genes defined as a pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Our hypothesis is that genes in the same pathway are more likely to be coordinately regulated than a randomly selected gene set. A correlation coefficient for each pair of genes in a pathway was estimated based on gene expression in normal or tumor samples, and statistically significant correlation coefficients were identified. The coherence indicator was defined as the ratio of the number of gene pairs in the pathway whose correlation coefficients are significant, divided by the total number of gene pairs in the pathway. We defined all genes that appeared in the KEGG pathways as a reference gene set. Our analysis indicated that the mean coherence indicator of pathways is significantly larger than the mean coherence indicator of random gene sets drawn from the reference gene set. Thus, the result supports our hypothesis. The significance of each individual pathway of n genes was evaluated by comparing its coherence indicator with coherence indicators of 1000 random permutation sets of n genes chosen from the reference gene set. We analyzed three data sets: two Affymetrix microarrays and one cDNA microarray. For each of the three data sets, statistically significant pathways were identified among all KEGG pathways. Seven of 96 pathways had a significant coherence indicator in normal tissue and 14 of 96 pathways had a significant coherence indicator in tumor tissue in all three data sets. The increase in the number of pathways with significant coherence indicators may reflect the fact that tumor cells have a higher rate of metabolism than normal cells. Five pathways involved in oxidative phosphorylation, ATP synthesis, protein synthesis, or RNA synthesis were coherent in both normal and tumor tissue, demonstrating that these are essential genes, a high level of expression of which is required regardless of cell type.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center