Send to

Choose Destination
See comment in PubMed Commons below
Int J Biochem Cell Biol. 2004 Oct;36(10):1954-66.

Identification of heparin affin regulatory peptide domains with potential role on angiogenesis.

Author information

  • 1Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, GR 26504, Greece.


Heparin affin regulatory peptide (HARP) is a growth factor displaying high affinity for heparin. It is present in the extracellular matrix of many tissues, interacting with heparan sulfate and dermatan/chondroitin sulfate glycosaminoglycans. We have previously shown that HARP is implicated in the control of angiogenesis and its effects are mimicked, at least in part, by synthetic peptides that correspond to its N and C termini. In the present work, we show that HARP is cleaved by plasmin, leading to the production of five peptides that correspond to distinct domains of the molecule. Heparin, heparan sulfate and dermatan sulfate, at various HARP to glycosaminoglycan ratios, partially protect HARP from plasmin degradation. The molecules with higher affinity to HARP are the more protective, heparin being the most efficient. The peptides that are produced from cleavage of HARP by plasmin, affect in vivo and in vitro angiogenesis and modulate the angiogenic activity of vascular endothelial growth factor on human umbilical vein endothelial cells. Similar results were obtained in vitro with recombinant HARP peptides, identical to the peptides generated after treatment of HARP with plasmin. These results suggest that different regions of HARP may induce or inhibit angiogenesis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center