Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9211-6. Epub 2004 Jun 14.

Catalytic activation of multimeric RNase E and RNase G by 5'-monophosphorylated RNA.

Author information

1
Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.

Abstract

RNase E is an endonuclease that plays a central role in RNA processing and degradation in Escherichia coli. Like its E. coli homolog RNase G, RNase E shows a marked preference for cleaving RNAs that bear a monophosphate, rather than a triphosphate or hydroxyl, at the 5' end. To investigate the mechanism by which 5'-terminal phosphorylation can influence distant cleavage events, we have developed fluorogenic RNA substrates that allow the activity of RNase E and RNase G to be quantified much more accurately and easily than before. Kinetic analysis of the cleavage of these substrates by RNase E and RNase G has revealed that 5' monophosphorylation accelerates the reaction not by improving substrate binding, but rather by enhancing the catalytic potency of these ribonucleases. Furthermore, the presence of a 5' monophosphate can increase the specificity of cleavage site selection within an RNA. Although monomeric forms of RNase E and RNase G can cut RNA, the ability of these enzymes to discriminate between RNA substrates on the basis of their 5' phosphorylation state requires the formation of protein multimers. Among the molecular mechanisms that could account for these properties are those in which 5'-end binding by one enzyme subunit induces a protein structural change that accelerates RNA cleavage by another subunit.

PMID:
15197283
PMCID:
PMC438955
DOI:
10.1073/pnas.0401382101
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center