Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2004 Jun 11;117(6):761-71.

A palmitoylation switch mechanism in the regulation of the visual cycle.

Author information

1
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, MA 02115, USA.

Abstract

RPE65 is essential for the biosynthesis of 11-cis-retinal, the chromophore of rhodopsin. Here, we show that the membrane-associated form (mRPE65) is triply palmitoylated and is a chaperone for all-trans-retinyl esters, allowing their entry into the visual cycle for processing into 11-cis-retinal. The soluble form of RPE65 (sRPE65) is not palmitoylated and is a chaperone for vitamin A, rather than all-trans-retinyl esters. Thus, the palmitoylation of RPE65 controls its ligand binding selectivity. The two chaperones are interconverted by lecithin retinol acyl transferase (LRAT) acting as a molecular switch. Here mRPE65 is a palmitoyl donor, revealing a new acyl carrier protein role for palmitoylated proteins. When chromophore synthesis is not required, mRPE65 is converted into sRPE65 by LRAT, and further chromophore synthesis is blocked. The studies reveal new roles for palmitoylated proteins as molecular switches and LRAT as a palmitoyl transferase whose role is to catalyze the mRPE65 to sRPE65 conversion.

PMID:
15186777
DOI:
10.1016/j.cell.2004.05.016
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center