Send to

Choose Destination
Biochem Pharmacol. 2004 Jul 1;68(1):165-75.

Cloning and functional expression of a novel marmoset cytochrome P450 2D enzyme, CYP2D30: comparison with the known marmoset CYP2D19.

Author information

Laboratory of Health Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan.


Using a primer set designed on the cDNA encoding the known marmoset cytochrome P450 2D19 (CYP2D19), a cDNA encoding a novel CYP2D enzyme (CYP2D30) was cloned from the liver of a female marmoset bred at Kyoto University (KYU). In addition, a cDNA encoding CYP2D19 was cloned from the liver of a female marmoset bred at Kagoshima University (KAU). CYP2D30 and CYP2D19 showed homologies of 93.6 and 93.4% in their nucleotide and amino acid sequences, respectively. Reverse transcription polymerase chain reaction (RT-PCR) and digestion with NdeI demonstrated that the KYU-marmoset liver contained mainly mRNA for CYP2D30, while the KAU-marmoset liver contained mainly mRNA for CYP2D19. Marmoset CYP2D30, like human CYP2D6, exhibited high debrisoquine (DB) 4-hydroxylase activity and relatively low DB 5-, 6-, 7- and 8-hydroxylase activities, whereas CYP2D19 lacked DB 4-hydroxylase but exhibited marked 5-, 6-, 7- and 8-hydroxylase activities. The two marmoset recombinant enzymes showed enantioselective bufuralol (BF) 1"-hydroxylase activities, similar to CYP2D6. BF 1"-hydroxylation by CYP2D30 exhibited product-enantioselectivity of (1"R-OH-BF << 1"S-OH-BF), similar to that observed with human CYP2D6, whereas CYP2D19 showed a reversed selectivity of (1"R-OH-BF > or = 1"S-OH-BF). BF 1"-hydroxylation in marmoset liver microsomes from both sources was inhibited by antibodies raised against rat CYP2D1 in a concentration-dependent manner. A known inhibitor of CYP2D6, quinidine, effectively inhibited the BF 1"-hydroxylation activities in liver microsomal fractions prepared from KYU- and KAU-marmosets. These results suggest that CYP2D19 and CYP2D30 proteins can be expressed as functional enzymes in marmoset livers, although it is unresolved whether both enzymes coexist in the same marmoset liver.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center