Send to

Choose Destination
Neuron. 2004 Jun 10;42(5):773-87.

Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice.

Author information

The Picower Center for Learning and Memory, Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.


Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances

Publication types

MeSH terms


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center