Send to

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2004 Jul 12;475(1):95-106.

Age-related changes in the expression of axonal and glial group I metabotropic glutamate receptor in the rat substantia nigra pars reticulata.

Author information

Yerkes National Primate Research Center, Division of Neuroscience and Department of Neurology, Emory University, 954 Gatewood Road NE, Atlanta, GA 30322, USA.


Neuronal systems undergo many significant changes during the course of brain development. To characterize the developmental changes in the substantia nigra pars reticulata (SNr) associated with the expression of group I metabotropic glutamate receptors (mGluRs), we used the immunoperoxidase and immunogold methods at the electron microscope level to determine whether the subcellular and subsynaptic patterns of distribution of mGluR1a and mGluR5 differ between young (P14-P18) and adult (>2 months) rats. The SNr of young rats contained a significantly higher density of labeled unmyelinated axons for both receptor subtypes. In addition, mGluR5-immunoreactive glial processes were very abundant in young rats but absent in the adults. On the other hand, the relative proportion of immunoreactive dendrites was the same for both age groups. Analysis of immunogold-labeled rat SNr revealed similar proportions of plasma membrane-bound mGluR1a and mGluR5 in adult (59.8 and 19.4%, respectively) and young (60.6 and 18.4%, respectively) rats. The pattern of subsynaptic localization of mGluR1a also remained the same between young and adults. However, the proportion of extrasynaptic mGluR5 decreased, whereas proportions of gold particles associated with symmetric synapses increased in adults. The results of this study demonstrate significant differences in the expression of group I mGluRs in the SNr of young and adult rats. These findings support a role for group I mGluRs during development and emphasize the importance of using brain tissue from age-matched subjects when attempting to correlate functional data from young rat brain slices with immunocytochemical localization of group I mGluRs.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center