Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr. 2004 Jun;134(6):1320-7.

Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats.

Author information

1
Institute of Medicine, Section of Medical Biochemistry, University of Bergen, Haukeland University Hospital, Norway. hege.vagenes@ikb.uib.no

Abstract

There is growing evidence that soy protein improves the blood lipid profiles of animals and humans. We compared the effects of fish protein hydrolysate (FPH), soy protein, and casein (control) on lipid metabolism in Wistar rats and genetically obese Zucker (fa/fa) rats. In Zucker rats, FPH treatment affected the fatty acid composition in liver, plasma, and triacylglycerol-rich lipoproteins. The mRNA levels of Delta 5 and Delta 6 desaturases were reduced by FPH and soy protein feeding compared with casein feeding. In Zucker rats both FPH and soy protein treatment reduced the plasma cholesterol level. Furthermore, the HDL cholesterol:total cholesterol ratio was greater in these rats and in the Wistar rats fed FPH and soy protein compared with those fed casein. Although fecal total bile acids were greater in soy protein-fed Zucker rats than in casein-fed controls, those fed FPH did not differ from the controls. However, the acyl-CoA:cholesterol acyltransferase activity was reduced in Zucker rats fed FPH and tended to be lower (P = 0.13) in those fed soy protein compared with those fed casein. Low ratios of methionine to glycine and lysine to arginine in the FPH and soy protein diets, compared with the casein diet, may be involved in lowering the plasma cholesterol concentration. Our results indicate that the effects of FPH and soy protein on fatty acid metabolism are similar in many respects, but the hypocholesterolemic effects of FPH and soy protein appear to be due to different mechanisms. FPH may have a role as a cardioprotective nutrient.

PMID:
15173391
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center